

Glass half full or half empty? Steel industry decarbonization to 2040

Presentation to the worldsteel Climate Action Open Forum

Brussels, 11 June 2024

Global steel production forecast

WSD expects global steel production to increase to 1,940 MT this decade as China's decrease partially offsets strong growth in India and ASEAN. Output further increases to 2,135 MT by 2040 as growth in those regions accelerates.

Source: WSA, WSD analysis

Global steel industry CO₂ decarbonization progress

WSD expects total steel industry CO_2 emissions to decrease nearly 20% to 2,940 MT by 2040. Global average intensity decreases to 1.39 CO_2 kg/tCS with all regions showing intensity declines.*

* Scope 1, 2, and inside the gates Scope 3

Global steel decarbonization drivers

WSD's steel decarbonization and cost model focusses on six primary decarbonization drivers.

- **Production:** 260 MT increase in steel output adds 480 MT in global CO₂ emissions.
- **EAF share:** 380 MT increase in EAF production and share increase from 28% to 42% decreases emissions by 460 MT.
- **DRI & green H**₂: increase in DRI production to 235 MT, the EAF charge rate from 19% to 23% and he green H₂ share of reductant mix from nil to 25% reduces global emissions by 50 MT.
- **BF/BOF operations**: increased BF efficiency, hydrogen injection and other fuel mix changes, decreased BOF hot metal ratios, improved yields and other factors reduce global emissions by nearly 450 MT.
- Grid intensity: reduction in the weighted global average grid intensity from 480 to 36 CO₂ kg/kwh decreases emissions by 60 MT.
- CCUS: 30% carbon capture for DR operations and 5% for BF eliminated nearly 15 MT of CO₂.

Source: WSD analysis

Steel industry region CO₂ emissions

Steel industry emissions in India, SE Asia and MENA increase ~615 MT by 2040 but are overshadowed by the nearly 1,300 MT decrease in emissions in China and other regions.

Source: WSD analysis

EAF production and production shares

WSD expects the global EAF share to increase to 42% based on the availability of scrap which is also used to reduce BOF hot metal ratios. The EAF share declines in the Rest of the World due to primarily BF/BOF capacity additions.

2040 base case conditions

In WSD's base case scenario, reducing global average emissions intensity to $1.39 \text{ CO}_2 \text{ kg/tCS}$ by 2040 requires significant advances in all decarbonization drivers.

Dimension	2019	2030 base case	2040 base case
EAF Production	520 MT (28%)	700 MT (36%)	900 MT (42%)
Scrap consumption	625 MT	765 MT	965 MT
DRI production	108 MT*	175 MT	235 MT
Iron ore consumption	2,215 MT	2,120 MT	2,130 MT
Coal consumption	905 MT	780 MT	680 MT
Avg grid CO ₂ intensity	.483 kg/kwh	.404 kg/kwh	.360 kg/kwh
Blast furnace fuel rate	528 kg/tHM	508 kg/tHM	477 kg/tHM
CO ₂ captured**	<.05 MT	< 1.0 MT	95 MT
Total green hydrogen	0	1.6 MT	13.0 MT
Total emissions	3,640 MT	3,280 MT	2,950 MT
Intensity (CO ₂ kg/tCS)	1.94	1.69	1.39

• 135 MT in 2023 (worldsteel)

DYNAMICS

Glass half full.....or half empty?

WSD's 2040 forecasts positions the global industry on course to reach the IEA's SDS target of ~ $1.0 \text{ CO}_2 \text{ kg/tCS}$, but not the NZE target of < $0.50 \text{ CO}_2 \text{ kg/tCS}$.

Can we do better?

If the 2040 base case scenario is a stretch, the "2040 1.00" case requires truly heroic action on all fronts.

	2019	2030 base case	2040 base case	2040 1.00 case	Lever
EAF Production	520 MT (28%)	700 MT (36%)	890 MT (42%)	1,060 MT (50%)	More DRI
Scrap consumption	625 MT	765 MT	965 MT	965 MT	Max available?
DRI production	108 MT*	175 MT	235 MT	365 MT	To fill scrap shortfall
Iron ore consumption	2,215 MT	2,120 MT	2,130 MT	2,060 MT	More DRI/less BF
Coal consumption	905 MT	780 MT	680 MT	550 MT	Coke rate < 310 kg/tHM
Avg. grid CO ₂ intensity	.483kg/kwh	.404 kg/kwh	.360 kg/kwh	.225 kg/kwh	Renewables
BF fuel rate	528 kg/tHM	508 kg/tHM	477 kg/tHM	460 kg/tHM	Several
CO ₂ captured**	<.05 MT	< 1.0 MT	95 MT	480 MT	50% DRI, 35% BF
Total green hydrogen	0	1.6 MT	13.0 MT	27.5 MT	50% DRI 30% BF
			_		
Total emissions	3,640 MT	3,280 MT	2,950 MT	2,135 MT	All of the choice
Intensity (CO_2 kg/tCS)	1.94	1.69	1.39	1.00	All of the above

Can we do better?

All eyes on the BF/BOF route: can we drive intensity lower with more hydrogen and other fuels? Can we make carbon capture work technically and financially in the absence of a universal carbon tax?

Final thought: clean hydrogen is the universal answer to all the world's decarbonization needs

..... but steel has a compelling story to claim priority usage.

* Source: Rocky Mountain Institute (RMI), https://rmi.org/we-need-hydrogen-but-not-for-everything/

